
Existential Quantification as Incremental SAT

Jörg Brauer1, Andy King2,3 and Jael Kriener3

1 Embedded Software Laboratory, RWTH Aachen University, Germany
2 Portcullis Computer Security, Pinner, UK

3 School of Computing, University of Kent, UK

Abstract. This paper presents an elegant algorithm for existential quan-
tifier elimination using incremental SAT solving. This approach contrasts
with existing techniques in that it is based solely on manipulating the
SAT instance rather than requiring any reengineering of the SAT solver
or needing an auxiliary data-structure such as a BDD. The algorithm
combines model enumeration with the generation of shortest prime impli-
cants so as to converge onto a quantifier-free formula presented in CNF.
We apply the technique to a number of hardware circuits and transfer
functions to demonstrate the effectiveness of the method.

1 Introduction

Elegant ideas and careful engineering have advanced DPLL-based SAT solvers to
the point they can rapidly decide the satisfiability of structured problems that
involve thousands of variables. SAT has thus been applied to the problem of
existential quantifier elimination, yet existing algorithms are considered “inel-
egant” [9, slide 24]. This paper is concerned with computing a quantifier-free
formula ∃X : ϕ in CNF where X is a set of propositional variables and ϕ is
itself presented in CNF. The quadratic nature of resolution renders it impractical
when X is large compared to vars(ϕ) and SAT-based techniques are favoured
when the set of variables Y = (vars(ϕ) \X) is small compared to vars(ϕ). These
techniques apply a SAT solver to find a cube c1 = (

∧
Y1) ∧ ¬(

∨
Y2) for which

ϕ ∧ c1 is satisfiable and Y1 and Y2 partition Y . The clause ¬c1 is then added
to ϕ and the process is repeated to enumerate all such cubes C = {c1, . . . , c`}.
During enumeration, these cubes are typically stored in a BDD which converges
onto

∨
C. A CNF representation of

∨
C can then be extracted from the BDD,

for example, by following all paths (cubes) c which lead to 0 and then negating
to obtain a clause ¬c. McMillan [29] critiqued this approach pointing out that:

“CNF and SAT-based quantifier elimination can be exponentially more
efficient than [..] BDDs in cases where the resulting fixed points have
compact representations in CNF, but not as BDDs.”

BDDs have been used to store the cubes as it is believed that they offer a
space-efficient way of storing the image (quantifier-free formula). However, this
does not preclude computing CNF directly, especially if the size of the CNF
is smaller than that extracted from the BDD. This paper can be considered a

response to the agenda set by McMillan and presents an efficient, and we believe
elegant, method for computing the image as a compact CNF formula that does
not require modification to a solver.

The quest for elegance is more than an exercise in aesthetics since existential
quantifier elimination finds application in: unbounded model checking [29], depen-
dency analysis [2], information flow analysis [20], transfer function synthesis [5]
and the synthesis of ranking functions [14]. It also occurs in predicate abstrac-
tion [21] from which we take an example [9] that we develop in what follows. In
predicate abstraction, a finite set of predicates is used to express properties of and
relationships between program variables at different points in the program. State
can then be described by a cube over the predicate symbols, and a set of states
as a Boolean function. Quantifier elimination arises when computing successor
states. Adapting an example from [9], suppose the predicates X = {x1, . . . , x6}
and Y = {y1, . . . , y6} express state at two consecutive program points, and the
transition relation between these states is expressed as a Boolean function:

µ = ¬(x2 ∧ y2) ∧ ¬(y2 ∧ y1) ∧ ((x4 ∧ x6)⇒ y1) ∧
(x3 ⇔ y4) ∧ (x4 ⇔ y3) ∧ (x5 ⇔ y6) ∧ (x6 ⇔ y5)

If ξ = (x1∧¬x2∧x3∧¬x4∧x5∧¬x6)∨ (x1∧¬x2∧¬x3∧x4∧¬x5∧x6) describes
the state at one point, then the state at the next is given by ∃X : (ξ ∧ µ).

To summarise our work, the paper contributes an algorithm for existential
quantifier elimination based solely on SAT solving. The elimination problem is
reduced to that of discovering a cube of size k which entails the formula; a problem
that can be completely encoded as a SAT instance. This formulation finesses the
need for a complicated DPLL-like algorithm based on internal implication graphs
and the application of heuristics [29, Sect. 2]. Furthermore, with a BDD-based
approach, the size of resulting CNF formula is very sensitive to the variable
ordering (even when dynamic reordering is applied), whereas the algorithm
proposed herein actually produces a compact CNF representation, challenging
the belief that BDDs are necessary for elimination.

2 Worked Example

Let ϕ denote a quantifier-free propositional formula and X denote a set of
propositional variables. The key idea behind our approach is to converge onto the
set of solutions of the formula ∃X : ϕ from above by adding clauses formed from
a sub-class of prime implicants of ¬ϕ; namely those prime implicants that contain
no positive or negative occurrence of any variable of X. This approach contrasts
with existing techniques in that it is based solely on manipulating the formula
ϕ, rather than requiring any reengineering of the solver itself [29] or needing an
auxiliary data-structure such as a BDD [22]. Furthermore the technique possesses
the “everyone a winner”[33] enumeration property, which means that, rather than
enumerating and filtering potential clauses of ∃X : ϕ, a new clause of ∃X : ϕ is
found on (virtually) each application of a SAT solver. This property is highly
desirable, because it couples the computational effort required to compute the

2

quantifier-free version of ϕ with its size. We build towards this technique using
ϕ = (ξ ∧ µ) from the introduction and demonstrate how to eliminate quantifiers
from ∃X : ϕ. We henceforth refer to this problem as that of projecting ϕ onto
Y , where Y = (vars(ϕ) \X) = {y1, . . . , yk}. Intuitively this problem is that of
removing all information in ϕ pertaining to variables other than Y .

2.1 Enumerating implicants

The first step of our method is to enumerate the implicants of ϕ in the projection
space. To do so, we first convert ϕ into CNF, for which we introduce a set of
Tseitin variables T [31] which are existentially quantified. The resulting formula
in CNF, which is equisatisfiable to ϕ, is denoted by ∃T : ψ. We then derive a
so-called dual-rail encoding [8] by applying a transformation inspired by [28]. This
amounts to introducing two disjoint sets of fresh variables Y + = {y+1 , . . . , y

+
k }

and Y − = {y−1 , . . . , y
−
k } and replacing each occurrence of the literal yi in ϕ with

y+i , and likewise each occurrence of the literal ¬yi with y−i . To ensure that y+i
and y−i cannot hold simultaneously, the transformed formula is augmented with

the clauses
∧k
i=1(¬y+i ∨ ¬y

−
i). Let τ(ψ) denote this syntactic transformation,

which yields a formula in CNF, defined over the variables V = X ∪ Y + ∪ Y − ∪ T .
Passing τ(ψ) to a SAT solver yields a model m1 : V → B, such as for example:

m1 =


x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 1, x6 7→ 0
y+1 7→ 0, y+2 7→ 0, y+3 7→ 0, y+4 7→ 1, y+5 7→ 0, y+6 7→ 1
y−1 7→ 1, y−2 7→ 1, y−3 7→ 1, y−4 7→ 0, y−5 7→ 1, y−6 7→ 0


(Note that the Tseitin variables T have been omitted for the purpose of pre-
sentation.) The same model m1 can be represented as a subset of V , namely,
{v ∈ V |m1(v) = 1} and, henceforth, we shall use this representation interchange-
ably with m1. The variables in m1 ∩ (Y + ∪ Y −) then define a conjunction of
literals, a cube, ξ(m1) over the variables in Y , which is given as:

ξ(m1) =
(∧
{yi | y+i ∈ (m1 ∩ Y +)}

)
∧
(∧
{¬yi | y−i ∈ (m1 ∩ Y −)}

)
Therefore, we have ξ(m1) = (¬y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6). Furthermore, the
cube ξ(m1) is a so-called implicant of ∃X : ϕ since ξ(m1) |= ∃X : ϕ. It constitutes
an under-approximation of ∃X : ϕ since the set of all models of ξ(m1) is a subset
of the set of all models of ∃X : ϕ. To find another under-approximation, and
specifically one that is not itself entailed by ξ(m1), we augment τ(ψ) with the
blocking clause

β(m1) =
(∨
{y−i | y

+
i ∈ (m1 ∩ Y +)}

)
∨
(∨
{y+i | y

−
i ∈ (m1 ∩ Y −)}

)
which gives β(m1) = (y+1 ∨ y

+
2 ∨ y

+
3 ∨ y

−
4 ∨ y

+
5 ∨ y

−
6). Of course enumerating

implicants in this way dovetails with the advances in incremental SAT.
Applying a solver to the augmented formula τ(ψ)′ = τ(ψ) ∧ β(m1) gives

another model m2 as follows:

m2 =


x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 1, x6 7→ 0
y+1 7→ 0, y+2 7→ 1, y+3 7→ 0, y+4 7→ 1, y+5 7→ 0, y+6 7→ 1
y−1 7→ 1, y−2 7→ 0, y−3 7→ 1, y−4 7→ 0, y−5 7→ 1, y−6 7→ 0


3

The model m2 defines another implicant ξ(m2) = (¬y1 ∧ y2 ∧¬y3 ∧ y4 ∧¬y5 ∧ y6)
of ∃X : ϕ, hence ξ(m1) ∨ ξ(m2) |= ∃X : ϕ. Repeating this strategy to derive
implicants yields an unsatisfiable formula after the fourth step, and thus

∨4
i=1 ξ(mi) =


(¬y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨
(¬y1 ∧ y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨

(y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨
(y1 ∧ ¬y2 ∧ y3 ∧ ¬y4 ∧ y5 ∧ ¬y6)

satisfies
∨4
i=1 ξ(mi) = ∃X : ϕ. However, observe that

∨4
i=1 ξ(mi) is in DNF and

also contains redundancies, e.g. ξ(m1) ∨ ξ(m2) = (¬y1 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6).
In the following section, we will demonstrate the use of cardinality constraints
based on sorting networks to avoid such redundancies during model enumeration.

2.2 Enumerating shortest implicants

Observe that the aforementioned redundancy would not have occured, had the
SAT solver first found the following model:

m′1 =


x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 1, x6 7→ 0
y+1 7→ 0, y+2 7→ 0, y+3 7→ 0, y+4 7→ 1, y+5 7→ 0, y+6 7→ 1
y−1 7→ 1, y−2 7→ 0, y−3 7→ 1, y−4 7→ 0, y−5 7→ 1, y−6 7→ 0


The model m′1 defines an implicant ξ(m′1) = (¬y1 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6), which
is entailed by both ξ(m1) and ξ(m2) (since, given two models m1 and m2,
ξ(m2) |= ξ(m1) if m1 ∩ (Y + ∪ Y −) ⊆ m2 ∩ (Y + ∪ Y −)). This suggests the
possibility of searching for shortest implicants. To derive shortest implicants ξ(m)
of ∃X : ϕ, we turn to sorting networks [25], which are used to force the number of
literals in ξ(m) (i.e. its length) to be ` for increasing ` ∈ {1, . . . , k}. The value of
a sorting network is that it can be applied to express the sum of k propositional
variables [18] in no more than 12k(dlog2(k)e+1) ternary clauses where the sum is
represented in unary fashion. By instantiating the outputs of a sorting network, a
cardinality constraint can be obtained. For example, constraining the outputs of a
6-bit sorter to 110000 ensures that exactly two input bits are set. Such cardinality
constraints can be imposed in conjunction with the formula τ(ψ) in order to force
the discovery of the shortest (i.e. strongest) implicants first and thereby prevent
the discovery of redundant implicants. The construction proceeds by introducing
a set Y ± = {y±1 , . . . , y

±
k } of fresh variables, which serve as inputs to a sorting

network. Each variable y±i indicates whether y+i or y−i appears in the implicant,

and we thus we constrain
∧k
i=1(y±i ⇔ (y+i ∨ y

−
i)) by introducing k clauses of the

form ci = (¬y±i ∨ y
+
i ∨ y

−
i) ∧ (y±i ∨ ¬y

+
i) ∧ (y±i ∨ ¬y

−
i). Given a k-bit sorter σ

with output variables {o1, . . . , ok}, a formula whose models describe implicants
of ∃X : ϕ of length ` is obtained by augmenting τ(ψ) as follows:

τ`(ψ) = τ(ψ) ∧ σ ∧
(∧k

i=1 ci

)
∧
(∧`

i=1 oi

)
∧
(∧k

i=`+1 ¬oi
)

4

Since τ`(ψ) is unsatisfiable for l ∈ {1, . . . , 4}, ∃X : ϕ does not possess implicants
shorter than 5. Testing τ5(ψ) for satisfiability yields the model m′1 as above.
Then, adding β(m′1) to τ5(ψ) to derive other implicants of length 5 yields an
unsatisfiable formula. We thus proceed with τ6(ψ)∧β(m′1) to give two implicants:

ξ(m′2) = (y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6)
ξ(m′3) = (y1 ∧ ¬y2 ∧ y3 ∧ ¬y4 ∧ y5 ∧ ¬y6)

Since τ6(ψ)∧
∧3
i=1(β(m′i)) is unsatisfiable, we have

∨3
i=1 ξ(m

′
i) = ∃X : ϕ, and we

have represented the projection in just 3 cubes. Note that although the clauses
(
∧`
i=1 oi)∧(

∧k
i=`+1 ¬oi) must be rescinded once all the implicants of length ` have

been found, this sub-formula is itself a cube. The force of this is that SAT solvers
support assumptions which are cubes. The assumption is added to the instance,
thereby binding some variables, but these bindings are discarded once a model is
found, in readiness for the next call to the solver. Conveniently, this lightweight
version of incremental SAT is sufficient to support the above algorithm.

2.3 Over-approximation by dualisation

Recall that we are interested in obtaining CNF, whereas the construction we have
presented so far yields formulae in DNF. Direct conversion of a formula in DNF
to an equivalent one in CNF may increase the size of the formula exponentially.
However, observe that since ∃X : ϕ =

∨3
i=1 ξ(m

′
i), ¬∃X : ϕ = ¬

∨3
i=1 ξ(m

′
i) =∧3

i=1 ¬ξ(m′i); latter formula can be converted into CNF straightforwardly by
pushing negations inward. We can thus reapply the above construction to infer
implicants of ¬∃X : ϕ. Given a cube ν such that ν |= ¬∃X : ϕ, the contrapositive
holds, giving ∃X : ϕ |= ¬ν. Therefore ¬ν over-approximates ∃X : ϕ, i.e. each
model of ∃X : ϕ is also a model of ¬ν. In order to apply the above method on
the dual of

∨3
i=1 ξ(m

′
i), we start by negating the formula to give:

¬∃X : ϕ =

{
(y1 ∨ y3 ∨ ¬y4 ∨ y5 ∨ ¬y6) ∧ (¬y1 ∨ y2 ∨ y3 ∨ ¬y4 ∨ y5 ∨ ¬y6)∧
(¬y1 ∨ y2 ∨ ¬y3 ∨ y4 ∨ ¬y5 ∨ y6)

Denote this formula by ω and apply τ to ω to give:

τ(ω) =

{
(y−1 ∨ y

−
3 ∨ y

+
4 ∨ y

+
5 ∨ y

+
6) ∧ (y+1 ∨ y

−
2 ∨ y

−
3 ∨ y

+
4 ∨ y

−
5 ∨ y

+
6) ∧

(y+1 ∨ y
−
2 ∨ y

+
3 ∨ y

−
4 ∨ y

+
5 ∨ y

−
6) ∧ (

∧6
i=1 ¬(y+i ∧ y

−
i))

We then solve τ1(ω), which is unsatisfiable: ¬
∨3
i=1 ξ(m

′
i) does not posses impli-

cants of length 1. Passing τ2(ω) to a SAT solver yields a model m′′1 as follows:

m′′1 =

{
y+1 7→ 0, y+2 7→ 1, y+3 7→ 0, y+4 7→ 0, y+5 7→ 0, y+6 7→ 0
y−1 7→ 0, y−2 7→ 0, y−3 7→ 0, y−4 7→ 0, y−5 7→ 0, y−6 7→ 1

}
We then extract a cube ξ(m′′1) = (y2 ∧ ¬y6) from m′′1 . From ξ(m′′1) |= ¬∃X : ϕ,
we deduce ∃X : ϕ |= ¬ξ(m′′1) and ¬ξ(m′′1) is a clause. We add a blocking clause
to suppress the cube as before and retrieve a model m′′2 for τ2(ω) ∧ β(m′′1),

5

which induces a cube ξ(m′′2) = (y3 ∧ y6). Then ∃X : ϕ |= ¬ξ(m′′1) ∧ ¬ξ(m′′2) and
τ2(ω) ∧ β(m′′1) ∧ β(m′′2) is unsatisfiable. We proceed with cubes of length 3 and
solve τ3(ω)∧β(m′′1)∧β(m′′2), which gives rise to a cube ξ(m′′3) = (¬y2∧¬y5∧¬y6).
By adding blocking clauses and enumerating all cubes ξ(m′′i) for i ∈ {1, . . . ,m},
we could derive a CNF formula

∧m
i=1 ¬ξ(m′′i) equivalent to ∃X : ϕ.

However, we can improve on this and produce a denser CNF representation
by searching for a sub-cube of ξ(m′′3) which is itself an implicant of ω. To do this,
let N = (Y + ∪Y −) \m′′3 = {y+1 , y

−
1 , y

+
2 , y

+
3 , y

−
3 , y

−
4 , y

+
5 , y

+
6 }. We then solve τ2(ω)

in conjunction with the cube
∧
{¬y+i | y

+
i ∈ N ∩ Y +} ∧

∧
{¬y−i | y

−
i ∈ N ∩ Y −}

which we pass the solver as an assumption. The solver produces a model m′′4
which defines ξ(m′′4) = (¬y5 ∧ ¬y6); thus ¬ξ(m′′4) = (y5 ∨ y6) |= ∃X : ϕ. Since
m′′4 ∩ (Y +∪Y −) ⊂m′′3 ∩ (Y +∪Y −), we have m′′3 |= m′′4 and ξ(m′′3) |= ξ(m′′4). We
thus discard ξ(m′′3) and proceed with τ4(ω)∧β(m′′1)∧β(m′′2)∧β(m′′4). Whenever
a fresh cube is discovered, we apply the same strategy to weaken it to the most
general one that still entails ω. It is interesting to note that an implicant of length
` can be generalised using at most dlog2(`)e calls a solver by applying dichotomic
search (though we do not apply this technique because ` is typically small).

Repeatedly applying this generalise scheme we derive the following minimal
(though not unique) CNF representation of ∃X : ϕ in five more iterations:

∃X : ϕ =

{
(¬y2 ∨ y6) ∧ (¬y3 ∨ ¬y6) ∧ (y5 ∨ y6) ∧ (y3 ∨ ¬y5) ∧
(y4 ∨ ¬y6) ∧ (y1 ∨ y6) ∧ (¬y1 ∨ ¬y2) ∧ (¬y4 ∨ y6)

Since the search is exhaustive, this is no longer an over-approximation of the
projection, but equivalent to it. Our implementation of this algorithm using
MiniSat takes 0.0012s and 0.0009s for the first and second stages of the algorithm
(corresponding to Sections 2.2 and 2.3 respectively) thus taking 0.0021s overall.

2.4 Reprise and reflection

One may wonder why not to enumerate prime implicants of ¬ϕ directly as
previously proposed [6]. To find an over-approximation ¬ν of ∃X : ϕ, put ¬ϕ
into CNF using a formula κ such that ∃T : κ ≡ ¬ϕ. Further, observe that
ν |= ∀X : ∃T : κ iff ¬∀X : ∃T : κ |= ¬ν iff ∃X : ¬∃T : κ |= ¬ν iff ∃X : ϕ |= ¬ν.
Hence, to find an over-approximation of ∃X : ϕ, it suffices to find an implicant of
∀X : ∃T : κ. Since ∀X : ∃T : κ |= ∃X : ∃T : κ, each implicant of ∀X : ∃T : κ is
also an implicant of ∃X : ∃T : κ. This suggests enumerating each implicant ν of
∃X : ∃T : κ and discarding those ν which are not implicants of ∀X : ∃T : κ, that is,
those that fail the entailment check ϕ |= ¬ν. However, this is hardly an “everyone
a winner” strategy as this method produces very large numbers of spurious
implicants that fail the entailment check. By combining model enumeration with
the generation of prime implicants on the dual formula, our new method does
not generate any spurious candidates, which explains performance improvements
of several orders of magnitude (see Sect. 4).

6

3 Formal Correctness

Let BoolV denote the class of propositional Boolean formulae over the set of
variables V , which is partitioned into two disjoint subsets X and Y , i.e. V = X∪Y
and X ∩ Y = ∅. We shall consider the problem of computing an implicant of
∃X : ϕ, where the formula ϕ ∈ BoolV is in CNF. The transformation is formalised
as a map τ on the set of literals LitV = {v,¬v | v ∈ V } over V . This map is,
in turn, defined in terms of propositional variables Y + = {y+ | y ∈ Y } and
Y − = {y− | y ∈ Y } where Y + ∩ Y − = ∅ and (Y + ∪ Y −) ∩ V = ∅.

Definition 1. The literal transformation map τ : LitV → LitX∪Y +∪Y − and its
inverse τ−1 : LitX∪Y +∪Y − → LitV are defined as follows:

τ(l) =

y
+ if l = y and y ∈ Y
y− if l = ¬y and y ∈ Y
l otherwise

τ−1(l) =

y if l = y+

¬y if l = y−

l otherwise

To lift τ to clauses, a clause is considered to be merely a set of literals. Then
τ(C) = {τ(l) | l ∈ C} for a clause C ⊆ LitV . The literal transformation map τ is
lifted to cubes and implicants (which is a particular type of cube) by likewise
considering these to be sets of conjoined literals. The transformation relates cubes
with literals drawn from LitV to cubes with literals drawn from LitX∪Y +∪Y − . We
then define non-trivial cubes (which do not contain opposing literals) as below:

Definition 2.

CubeV =
{
C ⊆ LitV

∣∣∀v ∈ V : {v,¬v} 6⊆ C
}

CubeX,Y =
{
C ∪ C ′

∣∣C ∈ CubeX ∧ C ′ ⊆ Y + ∪ Y − ∧ ∀y ∈ Y : {y+, y−} 6⊆ C ′
}

Note that a formula ϕ represented in CNF can be considered to be a set of
implicitly conjoined clauses F . This is used to state the following equivalence
result which asserts that implicants are preserved by the transformation τ :

Proposition 1 (equivalence). Let ϕ =
∧
{
∨
C | C ∈ F} where F ⊆ 2LitV and

put ϕ′ =
∧
{
∨
τ(C) | C ∈ F}. Then

– If D ∈ CubeV and (
∧
D) |= ϕ then (

∧
τ(D)) |= ϕ′.

– If D′ ∈ CubeX,Y and (
∧
D′) |= ϕ′ then (

∧
τ−1(D′)) |= ϕ.

The following corollary of the above relates implicants with literals drawn
from LitY to the satisfiability of the transformed clause set:

Corollary 1. Suppose ϕ and ϕ′ are defined as above. Then

– If D ∈ CubeY and
∧
D |= ∃X : ϕ then (

∧
τ(D)) ∧ ϕ′ is satisfiable.

– If D′ ∈ CubeY,∅ and (
∧
D′) ∧ ϕ′ is satisfiable then (

∧
τ−1(D′)) |= ∃X : ϕ.

To state how to compute an image by enumerating implicants, the unusual
notion of a blocking clause introduced in Sect. 2 is now formalised:

7

Definition 3. The mapping β : CubeY,∅ → CubeY,∅ is defined:

β(D′) = {y−i | y
+
i ∈ D

′} ∪ {y+i | y
−
i ∈ D

′}

Theorem 1 (correctness). Suppose ϕ and ϕ′ are defined as above.
Let D′1, . . . , D

′
` ∈ CubeY,∅ be a sequence such that:

– (
∧
l∈D′k

l) ∧ ϕ′ ∧ (
∧k−1
i=1 (

∨
l∈β(D′i)

l)) is satisfiable for all k ∈ {1, . . . , `} and

– ϕ′ ∧ (
∧`
i=1(

∨
l∈β(D′i)

l)) is unsatisfiable.

Then
∨`
i=1 ∧τ−1(D′i) = ∃X : ϕ.

The following proposition dovetails with the theorem to show how a CNF repre-
sentation of the projection can be derived in a two phase process. The corollary
that follows is immediate and states that the computation of implicants, in the
second phase at least, can be aborted prematurely without sacrificing correctness.

Proposition 2 (dualisation). Let ψ =
∨`
i=1(

∧
d∈Di

d) where D1, . . . , D` ∈
CubeY . Further, let ∃X : ϕ =

∨m
i=1(

∧
e∈Ei

e) where E1, . . . , Em ∈ CubeY and

ϕ =
∧`
i=1(

∨
l∈Di
¬l). Then ψ =

∧m
i=1(

∨
l∈Ei
¬l).

Corollary 2 (anytime). Let ψ =
∨`
i=1(

∧
d∈Di

d) where D1, . . . , D` ∈ CubeY .

Let
∧m
i=1Ei |= ∃X : ϕ where E1, . . . , Em ∈ CubeY and ϕ =

∧`
i=1(

∨
l∈Di
¬l).

Then ψ |=
∧m
i=1(

∨
l∈Ei
¬l).

The above results are presented in terms of any implicants, rather than prime
implicants only. This is because, while the latter govern the rate of convergence,
they do not affect correctness. Nevertheless, a prime implicant of an existentially
quantified formula can be formulated as two satisfability conditions. To state the
corollary, let JϕK ⊆ 2V denote the set of models of the Boolean function ϕ. For
example, if V = {x, y} then Jx ∨ yK = {{x}, {y}, {x, y}}.
Corollary 3. Suppose ϕ, ϕ′ and F ⊆ 2LitV are defined as above and put ψ =
ϕ′∧(

∧
y∈Y (¬y+∨¬y−)). Then D ∈ CubeY is a prime implicant of ∃X : ϕ iff D =

τ−1(M?∩(Y +∪Y −)) where M? ∈ JψK and |M?∩(Y +∪Y −)| ≤ |M ∩(Y +∪Y −)|
for all M ∈ JψK .

Note that ψ does not include any cardinality constraint on the set M?∩(Y +∪Y −),
hence the need to define a prime implicant in terms of an implicant no longer
than any other. The above result can straightforwardly be adapted to specify
how an implicant of a given size can be defined as a SAT instance.

To conclude the elaborations on correctness4, we observe that the greedy
generation of prime implicants does not necessarily yield a minimal CNF formula.
To see this, suppose ϕ = (¬w∧x∧y)∨ (¬x∧¬y∧¬z) and consider ∃X : ϕ where
X = {x}. Clearly ∃X : ϕ = D1 ∨D2 where D1 = (¬w ∧ y) and D2 = (¬y ∧ ¬z).
But also ∃X : ϕ = E1 ∨ E2 ∨ E3 where E1 = (¬w ∧ ¬z), E2 = (¬w ∧ y ∧ z) and
E3 = (w ∧ ¬y ∧ ¬z). Observe |D1| ≤ |D2| and likewise |E1| ≤ |E2| ≤ |E3|, and
indeed either CNF formulae can be generated, though the latter is sub-optimal.

4 Proofs are available from http://www.cs.kent.ac.uk/people/staff/amk/

cav11proofs.pdf.

8

http://www.cs.kent.ac.uk/people/staff/amk/cav11proofs.pdf
http://www.cs.kent.ac.uk/people/staff/amk/cav11proofs.pdf

4 Experiments

We have implemented the techniques described in this paper in C++ using
MiniSat with the express aim of answering the following questions:

– What is the overhead of using primes compared to standard enumeration?
– How are the primes distributed in terms of size within the two phases of the

algorithm, i.e. for DNF generation and CNF conversion?
– How does the method compare against BDD-based projection scheme, both

in terms of the size of CNF formulae and the time required to produce them?

To answer these questions, we compared our technique against a hybrid SAT/BDD
approach. We implemented our method on top of MiniSat v2.2. Cudd v2.4.2
was used for the BDD package since it offers direct support for enumerating the
prime implicants of a BDD. We chose bitonic sorting for the sorting network,
though smaller (albeit less regular) networks exist [25]. All experiments were
performed on a 2.6 GHz MacBook Pro equipped with 4 GB of RAM.

4.1 Benchmarks

As benchmarks, we selected several circuits from the 74X and ISCAS-89 bench-
mark series as well as projection problems arising from range analysis of microcon-
troller code [3,5]. The 74X circuits include an ALU (74181), a carry-look-ahead
generator (74182), an adder (74283) and a magnitude comparator (74L85). The
ALU is the hardest to analyse since it implements 16 different functions, de-
pending on 4 control bits. The ISCAS-89 benchmarks consist of a traffic light
controller (s298), two implementations of a 4× 4 add-shift multiplier (s344 and
s349), and a combinatorial circuit with randomly inserted flip-flops (s1196). All
circuits were projected onto their input and output variables so as to express
their semantics without reference to any intermediate variables.

The microcontroller code was exported from [mc]square [36] for the purpose
of synthesising transfer functions [5] for propagating ranges across blocks of
Atmel ATmega16 code. Transfer function synthesis is essentially an existential
quantifier problem We also considered projection problems that arise when over-
approximating the set of values that a register can take in a block (when a block
is considered in isolation to those blocks that flow into it [3]). Table 1 presents
the key statistics for each of these projection problems.

4.2 Projecting using prime implicants

Table 2 presents the results for DNF generation (resp. CNF conversion) using
prime implicants, giving the number of implicants (resp. clauses) in the resulting
formulae and the time required to compute them. Analogous figures are given for
the hybrid approach. It is interesting to see that for the circuits s344 and s349,
only 512 implicants in DNF are generated, but exhaustive model enumeration
yields 65792 disjuncts. This is because 256 out of 512 implicants are of length

9

Table 1. Information regarding the benchmark set; column ϕ contains the name
of the formula as referred to later on, followed by information about the origin of
the respective formula and its size; the benchmarks at the bottom are generated
from blocks of ATmega16 binary code; for these benchmarks, column info contains
the number of instructions and whether they were generated for set abstraction
(set) or transfer function synthesis (tf).

ϕ info |V | |ϕ|
74181 74x series 1001 2368
74182 74x series 227 526
74283 74x series 267 646
74L85 74x series 413 1084

add 3 (set) 74 119
increment 3 (set) 66 119
parity mit 15 (set) 2066 6725

parity swap 21 (set) 275 745
randerson 13 (set) 18658 61696

triple swap 9 (set) 89 192

ϕ info |V | |ϕ|
s298 ISCAS-89 1327 3164
s344 ISCAS-89 1665 3880
s349 ISCAS-89 1678 3914

s1196 ISCAS-89 5422 12870

adc 4 (tf) 19 290
admdswpcmp 11 (tf) 66 154

adsb2shad 8 (tf) 114 322
ilsh 5 (tf) 66 170
irsh 5 (tf) 66 170
iswp 8 (tf) 130 386

12, and thus already cover a large number of models in the projection space.
This suggests that our method can make model enumeration tractable where the
classical approach fails. For other cases, as exemplified by the 74181 and s1196
circuits, our approach offers no clear advantage. However, it is important to see
that transformation never seriously degrades performance; this is noteworthy
because one cannot know the distribution of the primes up front.

The percental distribution of the lengths of clauses that arise in CNF con-
version are depicted in Fig. 1. For reasons of space, graphs are given only for
the 74X series (though these distributions are typical). For DNF generation the
distributions are less interesting for these benchmarks, often consisting of a single
spike, but sometimes consist of two spikes, as for s344 and s349 at lengths 12 and
20. It is in these latter cases that primes improve over classic model enumeration.

4.3 Projecting using BDDs

In the hybrid SAT/BDD based approach, DNF to CNF conversion is realised with
a BDD. To support this, Cudd provides a dedicated operation that computes
prime implicants of a given BDD by finding a shortest path from the root to 1
leaves (though the lengths of the implicants and their number depend on the
variable ordering). In terms of size of the resulting CNF formula, it is interesting
to see that BDDs do not necessarily give the smallest representation; far from it.

In terms of running times, there is no clear winner: for the largest problem,
s1196, the SAT-based approach is faster for CNF conversion whereas the BDD-
based method is superior for 74181. However, we suspect that the balance may
well shift towards SAT if solvers continue to advance in performance. Furthermore,
the implementation of the SAT-based scheme required less than 100 lines of code
which itself makes it attractive.

10

Table 2. Experimental results for projection using prime implicant enumeration
and comparison to BDD-based method; the best results are emphasized

ϕ |Y |
Primes model Hybrid

DNF CNF total enum BDD total
size time size time time size time size time time

74181 22 16384 1.477 686 7.096 8.574 16384 1.421 476 1.320 2.798
74182 13 320 0.025 26 0.009 0.035 320 0.009 23 0.014 0.039
74283 14 512 0.022 98 0.147 0.169 512 0.023 270 0.077 0.099
74L85 14 2048 0.108 144 0.107 0.215 2048 0.092 145 0.053 0.162

s298 9 4 0.001 7 0.003 0.004 4 0.004 7 0.006 0.007
s344 20 512 0.068 16 0.018 0.087 65792 12.811 16 0.030 0.098
s349 20 512 0.070 16 0.017 0.088 65792 12.001 16 0.029 0.099

s1196 28 16384 11.182 570 5.465 16.653 16384 11.374 822 5.810 16.993

adder
16 256 0.007 16 0.012 0.020 1024 0.025 16 0.024 0.031
24 1024 0.030 31 0.054 0.086 4096 0.117 29 0.090 0.120

increment
8 4 0.001 10 0.001 0.003 4 0.001 10 0.006 0.007

16 256 0.004 14 0.007 0.012 256 0.003 14 0.010 0.014
24 256 0.008 32 0.024 0.033 256 0.004 34 0.027 0.035

parity mit
8 100 0.033 4 0.001 0.036 200 0.005 4 0.006 0.039

16 12800 2.363 16 1.361 3.727 25600 5.227 10 0.284 2.647
24 40960 8.543 40 6.316 14.875 51200 11.348 41 1.155 9.698

parity swap
8 16 0.002 4 0.001 0.004 16 0.001 4 0.007 0.009

16 256 0.008 12 0.008 0.017 256 0.010 12 0.011 0.019
24 256 0.013 37 0.038 0.051 256 0.011 40 0.101 0.114

randerson
8 64 0.102 2 0.001 0.104 64 0.051 2 0.006 0.108

16 256 0.136 14 0.010 0.147 256 0.089 14 0.013 0.149
24 256 0.140 27 0.023 0.164 256 0.092 30 0.058 0.198

triple swap
8 16 0.002 12 0.001 0.004 64 0.005 12 0.007 0.009

16 512 0.013 20 0.029 0.042 512 0.009 22 0.015 0.028

adc
8 128 0.004 7 0.002 0.006 512 0.010 7 0.006 0.010

16 128 0.005 47 0.018 0.023 512 0.012 52 0.036 0.041
24 128 0.006 80 0.047 0.054 512 0.012 92 0.116 0.122

admdswpcmp
8 191 0.003 7 0.003 0.006 191 0.002 7 0.008 0.011

16 191 0.007 54 0.021 0.029 191 0.005 60 0.049 0.057
24 191 0.009 56 0.025 0.035 191 0.006 66 0.071 0.080

adsb2shad
16 154 0.008 67 0.026 0.034 512 0.012 71 0.089 0.097
24 310 0.013 124 0.045 0.058 1024 0.021 129 0.095 0.108

ilsh
8 32 0.002 3 0.001 0.003 32 0.002 3 0.008 0.010

16 256 0.008 13 0.009 0.017 256 0.005 13 0.011 0.019
24 256 0.009 44 0.023 0.032 256 0.006 46 0.035 0.046

irsh
8 16 0.001 4 0.001 0.001 64 0.003 4 0.007 0.008

16 16 0.002 22 0.004 0.006 64 0.003 21 0.009 0.011
24 16 0.003 45 0.012 0.016 64 0.003 45 0.017 0.020

iswp
16 4096 0.103 16 0.235 0.339 4096 0.061 16 0.075 0.179
24 4096 0.126 27 0.251 0.379 4096 0.073 27 0.140 0.266

11

74181
0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 74182
0	

2	

4	

6	

8	

10	

12	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	

74283
0	

10	

20	

30	

40	

50	

60	

70	

80	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 74L85
0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	

Fig. 1. Distribution of implicants by length for the 74X benchmarks

4.4 Generalising implicants

During the development of the method described in this paper, we found that
generalisation (as described in Sect. 2.3) had to be applied in tandem with search
for a shortest implicant for the formula that is accompanied with the blocking
clauses (as described in Sect. 2.2). Enumerating implicants without generalisation
yields a much larger number of clauses; for the 74283 benchmark, 932 instead of
98. Strangely the runtimes are almost equal, which is the typical pattern. We
conclude that generalisation is advisable since, though it does not improve the
runtime, it does improve the density of the resulting CNF formula.

5 Related Work

The complexity of the shortest implicant problem for DNF formulae has been
studied by Umans [38] who showed that it is GC (log2(n), coNP)-complete. Even
though this result is not directly transferable to CNF, it suggests the parallel
problem in CNF may be similarly difficult and thereby supports the application
of SAT solvers to the derivation of shortest implicants.

5.1 Consensus method and resolution

The consensus method has been proposed [4,32,35] as a way of enumerating all
the prime implicants of a propositional function in DNF. If f is in CNF, then it
is straightforward to derive a DNF representation of ¬f , to which the consensus
procedure can be applied to find its prime implicants. One might think that this
provides a way to compute projection, but the key step of the consensus method
combines two elementary conjunctions of ¬f , say, x ∧ C and (¬x) ∧D, to form
C ∧D, which is isomorphic to resolution. Hence the consensus method shares the
inefficiency problems associated with applying resolution to a formula in CNF.

12

5.2 Hybrid methods and McMillan’s method

SAT has been used before to compute projections [26,29] as have BDDs [10,26,39].
Hybrid approaches that combine SAT solving and BDDs typically represent state
sets as BDDs and express the transition relation in CNF [22,37], though some
approaches combine BDDs and SAT solving in different ways. For example,
Damiano and Kukula [16] substitute clauses with BDDs in a DPLL solver, Jin
and Somenzi [23] combine BDDs and SAT solving using CNF to avoid explosion
in the sizes of the resulting BDDs, whereas Aloul et al. [1] study the connection
between CNF formulae and BDDs for good variable orderings. The approach of
Cavada et al. [11] recursively computes quantifications for subtrees, which are
then combined; SMT solving ensures consistency of the transformations.

McMillan [29] has shown how to perform universal projection for CTL modali-
ties such as AXϕ using DPLL-like enumeration and also explained how to represent
an arbitrary Boolean encoding of ϕ in CNF without existential quantification.
The key idea of his toCNF(ϕ) procedure [29, Sect. 3] is to deduce a clause from
a satisfying assignment of ϕ whose complement rules out some cases that violate
ϕ. His approach requires a modified DPLL-engine and resolution coupled with
several heuristics — which literals to analyse, which variables to resolve on and
suchlike — which strongly affect the performance of the approach [29, Sect. 2].
Our approach, in comparison, builds on top of an existing SAT library and is
therefore both straightforward to implement and will immediately benefit from
any improvement to the library itself. Nevertheless, we consider the SAT-based
algorithm of McMillan to be an important work that has indeed found application
in the predicate abstraction of hardware circuits [13] and post-image computa-
tion [12]. A variation on the McMillan algorithm is given by Sheng and Hsiao [37]
who apply a success-driven rather than a conflict-driven search for models (recall
that DPLL-style algorithms use a conflict-driven search). However, Sheng and
Hsiao store their results in a BDD rather than generating a CNF formula.

5.3 Methods based on integer linear programming

Integer linear programming has been used to find shortest implications, as have
SAT engines which have been modified to support inequalities [28]. In this work
a transformation is described which is similar to τ . However, the work is not
concerned with quantifier elimination, hence 0-1 variables are introduced for each
variable in the formula rather than merely those in the projection space.

5.4 Methods based on primes and cubes

Prime implicants have been directly applied to widening Boolean functions
represented as ROBDDs [24]. By applying a recursive meta-product construc-
tion [15], collections of short primes can be used to derive an ROBDD that is an
over-approximation of the input. Our work on applying SAT to projection was
motivated by the empirical finding that collections of short primes often yield
good approximations of Boolean formulae [24, Sect. 5.1].

13

Lahiri et al. [26] have described how to enumerate cubes in the projection
space using SAT so as to perform image computation for predicate abstraction.
Blocking clauses are chosen heuristically, though details of the heuristics are
not given, and the approach does not guarantee to infer cubes of minimal size.
This work was further developed by Lahiri et al. [27] who used DPLL(T)-based
SMT solving to enumerate models. Each model is then stored in a BDD from
which the results are extracted as disjunctions of prime implicants. They search
for cubes c1,k, . . . , cn,k of increasing length k such that ϕ |=

∨n
i=1 ci,k, which

chimes with our approach. In contrast, however, we apply prime implicants in
two different ways, that is, for enumerating cubes as well as clauses, so that our
final quantifier-free formula is presented in CNF. To illustrate the conceptual
difference between the methods, consider the benchmarks s344 and s349 from
Sect. 4, for which DNF enumeration yields 256 cubes of lengths 12 and 22. The
method of Lahiri et al. enumerates all intermediate cubes of lengths 13, . . . , 21 to
converge onto ∃X : ϕ, whereas our approach leapfrogs these intermediate cubes
by specifying the requirement of a cube of size k within the SAT instance itself.
The MathSat SMT solver [7] uses an algorithm that also relies on a formula
transformation similar to τ . However, rather than adding cardinality constraints
to the SAT instance, they modified the solver so that it takes 0 decisions during
SAT solving. Earlier approaches [17,19,34] to predicate abstraction invoke a
solver for each cube c to discover if ϕ ∧ c is satisfiable. To reduce the number of
calls to the decision procedure, they start with small cubes, and only if ϕ ∧ c is
satisfiable, they proceed with cubes of the form ϕ ∧ c ∧ d and ϕ ∧ c ∧ ¬d. This
approach is based on a large number of SAT/SMT calls, typically requires many
unsatisfiability proofs (which are often more difficult for SAT solvers to provide
than find a model), and does not fit as well with incremental SAT [27, Sect. 3.2].
More recently, Monniaux [30] described a method for quantifier elimination called
lazy model enumeration. The key idea of his algorithm is to derive a cube that
implies a given formula, which is then generalised towards a weaker implicant.
By way of comparison, our algorithm starts with implicants as short as possible;
weakening is required by the encoding. Although similar in spirit, his algorithm
proceeds diametrically opposed to ours, and moreover generates DNF.

6 Concluding Discussion

This paper advocates using SAT to eliminate existential quantifiers from formulae
presented in CNF. The method is based on a two-phase approach: first, SAT
solving is applied to enumerate the prime implicants of a quantified formula;
second, cubes are translated into clauses to derive a CNF representation of
the projection. The second phase is anytime in that it can be stopped early
without compromising soundness. This can be considered a pragmatic response
to the complexity of DNF to CNF conversion. As well as exploiting advances
in incremental SAT and finessing the need to modify a solver, it provides an
efficient way of storing projections without BDDs, whilst avoiding the blow-up
in the number of intermediate clauses that comes with applying resolution.

14

Acknowledgements The first author was supported, in part, by the DFG research
training group 1298 Algorithmic Synthesis of Reactive and Discrete-Continuous
Systems and by the DFG Cluster of Excellence on Ultra-high Speed Information
and Communication, German Research Foundation grant DFG EXC 89. The
second author was funded, in part, by a Royal Society travel grant, reference
TG092357, and a Royal Society Industrial Fellowship, reference IF081178. We
thank Edd Barrett, Armin Biere, Stefan Kowalewski and Axel Simon for helpful
discussions.

References

1. F. A. Aloul, I. L. Markov, and K. A. Sakallah. Faster SAT and Smaller BDDs via
Common Function Structure. In ICCAD, pages 443–448, 2001.

2. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two Classes of
Boolean Functions for Dependency Analysis. Sci. Comp. Program., 31(1):3–45,
1998.

3. E. Barrett and A. King. Range and Set Abstraction Using SAT. Electronic Notes
in Theoretical Computer Science, 267(1):17–27, 2010.

4. A. Blake. Canonical expressions in Boolean algebra. University of Chicago, 1938.
5. J. Brauer and A. King. Automatic Abstraction for Intervals using Boolean Formulae.

In SAS, volume 6337 of LNCS, pages 167–183. Springer, 2010.
6. J. Brauer and A. King. Approximate Quantifier Elimination for Propositional

Boolean Formulae. In NFM, volume 6617 of LNCS, pages 73–88. Springer, 2011.
7. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The

MathSAT 4 SMT Solver. In CAV, volume 5123 of LNCS, pages 299–303. Springer,
2008.

8. R. Bryant. Boolean analysis of MOS circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 6(4):634–649, 1987.

9. R. E. Bryant. A View from the Engine Room: Computational Support for Symbolic
Model Checking. In 25MC, volume 5000 of LNCS, pages 145–149. Springer, 2008.
http://www.slidefinder.net/m/mc25/7464626.

10. J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020

states and beyond. Information and Computation, 98:142–170, 1992.
11. R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram, M. Roveri, and R. K.

Shyamasundar. Computing predicate abstractions by integrating BDDs and SMT
solvers. In FMCAD, pages 69–76. IEEE, 2007.

12. P. Chauhan, E. M. Clarke, and D. Kroening. A SAT-based algorithm for reparame-
terization in symbolic simulation. In DAC, pages 524–529. ACM, 2004.

13. E. M. Clarke, M. Talupur, H. Veith, and D. Wang. SAT Based Predicate Abstraction
for Hardware Verification. In SAT, volume 2919 of LNCS, pages 78–92. Springer,
2003.

14. B. Cook, D. Kroening, P. Rümmer, and C. Wintersteiger. Ranking Function
Synthesis for Bit-Vector Relations. In TACAS, volume 6015 of LNCS, pages
236–250. Springer, 2010.

15. O. Coudert and J. C. Madre. Implicit and Incremental Computation of Primes and
Essential Primes of Boolean Functions. In DAC, pages 36–39. IEEE, 1992.

16. R. F. Damiano and J. H. Kukula. Checking satisfiability of a conjunction of BDDs.
In DAC, pages 818–823. ACM, 2003.

15

17. S. Das, D. L. Dill, and S. Park. Experience with Predicate Abstraction. In CAV,
volume 1633 of LNCS, pages 160–171. Springer, 1999.

18. N. Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT. JSAT,
2(1-4):1–26, 2006.

19. C. Flanagan and S. Qadeer. Predicate Abstraction for Software Verification. In
POPL, pages 191–202. ACM, 2002.

20. S. Genaim, R. Giacobazzi, and I. Mastroeni. Modeling Secure Information Flow
with Boolean Functions. In IFIP WG 1.7, ACM Workshop on Issues in the Theory
of Security, pages 55–66, Barcelona, Spain, 2004.

21. S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS. In CAV,
volume 1254 of LNCS, pages 72–83. Springer, 1997.

22. A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-Based Image Computation with
Application in Reachability Analysis. In FMCAD, number 1954 in LNCS, pages
354–371. Springer, 2000.

23. H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solver. In SAT, volume
3542 of LNCS, pages 211–223. Springer, 2005.

24. N. Kettle, A. King, and T. Strzemecki. Widening ROBBDs with Prime Implicants.
In TACAS, volume 3920 of LNCS, pages 105–119. Springer, 2006.

25. D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, 1997.
26. S. K. Lahiri, R. E. Bryant, and B. Cook. A Symbolic Approach to Predicate

Abstraction. In CAV, volume 2725 of LNCS, pages 141–153. Springer, 2003.
27. S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast Predicate

Abstraction. In CAV, volume 4144 of LNCS, pages 424–437. Springer, 2006.
28. V. M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L. Oliveira. Prime Implicant

Computation Using Satisfiability Algorithms. In International Conference on Tools
with Artificial Intelligence, pages 232–239. IEEE Press, 1997.

29. K. L. McMillan. Applying SAT Methods in Unbounded Symbolic Model Checking.
In CAV, volume 2404 of LNCS, pages 250–264. Springer, 2002.

30. D. Monniaux. Quantifier elimination by lazy model enumeration. In CAV, volume
6174 of LNCS, pages 585–599. Springer, 2010.

31. D. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Translation.
Journal of Symbolic Computation, 2(3):293–304, 1986.

32. W. V. Quine. A way to simplify truth functions. American Mathematical Monthly,
62(9):627–631, 1955.

33. R. C. Read. Everyone a Winner. Annals of Discrete Mathematics, 2:107–120, 1978.
34. H. Säıdi and N. Shankar. Abstract and Model Check While You Prove. In CAV,

volume 1633 of LNCS, pages 443–454. Springer, 1999.
35. E. W. Samson and B. E. Mills. Circuit minimization: Algebra and algorithms for

new Boolean canonical expressions. Technical Report TR 54-21, United States Air
Force, Cambridge Research Lab, 1954.

36. B. Schlich. Model checking of software for microcontrollers. ACM Trans. Embedded
Comput. Syst., 9(4), 2010. Article Number 36.

37. S. Sheng and M. S. Hsiao. Efficient Preimage Computation Using A Novel Success-
Driven ATPG. In DATE, pages 10822–10827. IEEE, 2003.

38. C. Umans. The Minimum Equivalent DNF Problem and Shortest Implicants. In
FOCS, pages 556–563. IEEE Press, 1998.

39. S. Weaver, J. V. Franco, and J. S. Schlipf. Extending Existential Quantification in
Conjunctions of BDDs. JSAT, 1(2):89–110, 2006.

16

	Existential Quantification as Incremental SAT
	Jörg Brauer, Andy King and Jael Kriener

